3.3.93 \(\int \cot ^2(c+d x) \csc ^5(c+d x) (a+a \sin (c+d x))^3 \, dx\) [293]

3.3.93.1 Optimal result
3.3.93.2 Mathematica [B] (verified)
3.3.93.3 Rubi [A] (verified)
3.3.93.4 Maple [A] (verified)
3.3.93.5 Fricas [B] (verification not implemented)
3.3.93.6 Sympy [F(-1)]
3.3.93.7 Maxima [A] (verification not implemented)
3.3.93.8 Giac [B] (verification not implemented)
3.3.93.9 Mupad [B] (verification not implemented)

3.3.93.1 Optimal result

Integrand size = 29, antiderivative size = 124 \[ \int \cot ^2(c+d x) \csc ^5(c+d x) (a+a \sin (c+d x))^3 \, dx=\frac {7 a^3 \text {arctanh}(\cos (c+d x))}{16 d}-\frac {4 a^3 \cot ^3(c+d x)}{3 d}-\frac {3 a^3 \cot ^5(c+d x)}{5 d}+\frac {7 a^3 \cot (c+d x) \csc (c+d x)}{16 d}-\frac {17 a^3 \cot (c+d x) \csc ^3(c+d x)}{24 d}-\frac {a^3 \cot (c+d x) \csc ^5(c+d x)}{6 d} \]

output
7/16*a^3*arctanh(cos(d*x+c))/d-4/3*a^3*cot(d*x+c)^3/d-3/5*a^3*cot(d*x+c)^5 
/d+7/16*a^3*cot(d*x+c)*csc(d*x+c)/d-17/24*a^3*cot(d*x+c)*csc(d*x+c)^3/d-1/ 
6*a^3*cot(d*x+c)*csc(d*x+c)^5/d
 
3.3.93.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(252\) vs. \(2(124)=248\).

Time = 8.41 (sec) , antiderivative size = 252, normalized size of antiderivative = 2.03 \[ \int \cot ^2(c+d x) \csc ^5(c+d x) (a+a \sin (c+d x))^3 \, dx=-\frac {a^3 \left (\csc ^6\left (\frac {1}{2} (c+d x)\right ) (18+5 \csc (c+d x))+\csc ^4\left (\frac {1}{2} (c+d x)\right ) (34+90 \csc (c+d x))-2 \csc ^2\left (\frac {1}{2} (c+d x)\right ) (176+105 \csc (c+d x))-840 \csc (c+d x) \left (\log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )\right )+(97+159 \cos (c+d x)+44 \cos (2 (c+d x))) \sec ^6\left (\frac {1}{2} (c+d x)\right )+840 \csc ^3(c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )-1440 \csc ^5(c+d x) \sin ^4\left (\frac {1}{2} (c+d x)\right )-320 \csc ^7(c+d x) \sin ^6\left (\frac {1}{2} (c+d x)\right )\right ) \sin (c+d x) (1+\sin (c+d x))^3}{1920 d \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^6} \]

input
Integrate[Cot[c + d*x]^2*Csc[c + d*x]^5*(a + a*Sin[c + d*x])^3,x]
 
output
-1/1920*(a^3*(Csc[(c + d*x)/2]^6*(18 + 5*Csc[c + d*x]) + Csc[(c + d*x)/2]^ 
4*(34 + 90*Csc[c + d*x]) - 2*Csc[(c + d*x)/2]^2*(176 + 105*Csc[c + d*x]) - 
 840*Csc[c + d*x]*(Log[Cos[(c + d*x)/2]] - Log[Sin[(c + d*x)/2]]) + (97 + 
159*Cos[c + d*x] + 44*Cos[2*(c + d*x)])*Sec[(c + d*x)/2]^6 + 840*Csc[c + d 
*x]^3*Sin[(c + d*x)/2]^2 - 1440*Csc[c + d*x]^5*Sin[(c + d*x)/2]^4 - 320*Cs 
c[c + d*x]^7*Sin[(c + d*x)/2]^6)*Sin[c + d*x]*(1 + Sin[c + d*x])^3)/(d*(Co 
s[(c + d*x)/2] + Sin[(c + d*x)/2])^6)
 
3.3.93.3 Rubi [A] (verified)

Time = 0.46 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {3042, 3352, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot ^2(c+d x) \csc ^5(c+d x) (a \sin (c+d x)+a)^3 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (c+d x)^2 (a \sin (c+d x)+a)^3}{\sin (c+d x)^7}dx\)

\(\Big \downarrow \) 3352

\(\displaystyle \int \left (a^3 \cot ^2(c+d x) \csc ^5(c+d x)+3 a^3 \cot ^2(c+d x) \csc ^4(c+d x)+3 a^3 \cot ^2(c+d x) \csc ^3(c+d x)+a^3 \cot ^2(c+d x) \csc ^2(c+d x)\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {7 a^3 \text {arctanh}(\cos (c+d x))}{16 d}-\frac {3 a^3 \cot ^5(c+d x)}{5 d}-\frac {4 a^3 \cot ^3(c+d x)}{3 d}-\frac {a^3 \cot (c+d x) \csc ^5(c+d x)}{6 d}-\frac {17 a^3 \cot (c+d x) \csc ^3(c+d x)}{24 d}+\frac {7 a^3 \cot (c+d x) \csc (c+d x)}{16 d}\)

input
Int[Cot[c + d*x]^2*Csc[c + d*x]^5*(a + a*Sin[c + d*x])^3,x]
 
output
(7*a^3*ArcTanh[Cos[c + d*x]])/(16*d) - (4*a^3*Cot[c + d*x]^3)/(3*d) - (3*a 
^3*Cot[c + d*x]^5)/(5*d) + (7*a^3*Cot[c + d*x]*Csc[c + d*x])/(16*d) - (17* 
a^3*Cot[c + d*x]*Csc[c + d*x]^3)/(24*d) - (a^3*Cot[c + d*x]*Csc[c + d*x]^5 
)/(6*d)
 

3.3.93.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3352
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Int[ExpandTrig 
[(g*cos[e + f*x])^p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x] /; F 
reeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0]
 
3.3.93.4 Maple [A] (verified)

Time = 0.34 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.39

method result size
parallelrisch \(-\frac {\left (\cot ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )-\left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {36 \left (\cot ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5}-\frac {36 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5}+21 \left (\cot ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-21 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+28 \left (\cot ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-28 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-3 \left (\cot ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-120 \cot \left (\frac {d x}{2}+\frac {c}{2}\right )+120 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+168 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right ) a^{3}}{384 d}\) \(172\)
risch \(-\frac {a^{3} \left (105 \,{\mathrm e}^{11 i \left (d x +c \right )}+365 \,{\mathrm e}^{9 i \left (d x +c \right )}-240 i {\mathrm e}^{10 i \left (d x +c \right )}-1110 \,{\mathrm e}^{7 i \left (d x +c \right )}+2160 i {\mathrm e}^{8 i \left (d x +c \right )}-1110 \,{\mathrm e}^{5 i \left (d x +c \right )}-1760 i {\mathrm e}^{6 i \left (d x +c \right )}+365 \,{\mathrm e}^{3 i \left (d x +c \right )}+480 i {\mathrm e}^{4 i \left (d x +c \right )}+105 \,{\mathrm e}^{i \left (d x +c \right )}-816 i {\mathrm e}^{2 i \left (d x +c \right )}+176 i\right )}{120 d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{6}}-\frac {7 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{16 d}+\frac {7 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{16 d}\) \(192\)
derivativedivides \(\frac {-\frac {a^{3} \left (\cos ^{3}\left (d x +c \right )\right )}{3 \sin \left (d x +c \right )^{3}}+3 a^{3} \left (-\frac {\cos ^{3}\left (d x +c \right )}{4 \sin \left (d x +c \right )^{4}}-\frac {\cos ^{3}\left (d x +c \right )}{8 \sin \left (d x +c \right )^{2}}-\frac {\cos \left (d x +c \right )}{8}-\frac {\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{8}\right )+3 a^{3} \left (-\frac {\cos ^{3}\left (d x +c \right )}{5 \sin \left (d x +c \right )^{5}}-\frac {2 \left (\cos ^{3}\left (d x +c \right )\right )}{15 \sin \left (d x +c \right )^{3}}\right )+a^{3} \left (-\frac {\cos ^{3}\left (d x +c \right )}{6 \sin \left (d x +c \right )^{6}}-\frac {\cos ^{3}\left (d x +c \right )}{8 \sin \left (d x +c \right )^{4}}-\frac {\cos ^{3}\left (d x +c \right )}{16 \sin \left (d x +c \right )^{2}}-\frac {\cos \left (d x +c \right )}{16}-\frac {\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{16}\right )}{d}\) \(222\)
default \(\frac {-\frac {a^{3} \left (\cos ^{3}\left (d x +c \right )\right )}{3 \sin \left (d x +c \right )^{3}}+3 a^{3} \left (-\frac {\cos ^{3}\left (d x +c \right )}{4 \sin \left (d x +c \right )^{4}}-\frac {\cos ^{3}\left (d x +c \right )}{8 \sin \left (d x +c \right )^{2}}-\frac {\cos \left (d x +c \right )}{8}-\frac {\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{8}\right )+3 a^{3} \left (-\frac {\cos ^{3}\left (d x +c \right )}{5 \sin \left (d x +c \right )^{5}}-\frac {2 \left (\cos ^{3}\left (d x +c \right )\right )}{15 \sin \left (d x +c \right )^{3}}\right )+a^{3} \left (-\frac {\cos ^{3}\left (d x +c \right )}{6 \sin \left (d x +c \right )^{6}}-\frac {\cos ^{3}\left (d x +c \right )}{8 \sin \left (d x +c \right )^{4}}-\frac {\cos ^{3}\left (d x +c \right )}{16 \sin \left (d x +c \right )^{2}}-\frac {\cos \left (d x +c \right )}{16}-\frac {\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{16}\right )}{d}\) \(222\)

input
int(cos(d*x+c)^2*csc(d*x+c)^7*(a+a*sin(d*x+c))^3,x,method=_RETURNVERBOSE)
 
output
-1/384*(cot(1/2*d*x+1/2*c)^6-tan(1/2*d*x+1/2*c)^6+36/5*cot(1/2*d*x+1/2*c)^ 
5-36/5*tan(1/2*d*x+1/2*c)^5+21*cot(1/2*d*x+1/2*c)^4-21*tan(1/2*d*x+1/2*c)^ 
4+28*cot(1/2*d*x+1/2*c)^3-28*tan(1/2*d*x+1/2*c)^3-3*cot(1/2*d*x+1/2*c)^2+3 
*tan(1/2*d*x+1/2*c)^2-120*cot(1/2*d*x+1/2*c)+120*tan(1/2*d*x+1/2*c)+168*ln 
(tan(1/2*d*x+1/2*c)))*a^3/d
 
3.3.93.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 227 vs. \(2 (112) = 224\).

Time = 0.29 (sec) , antiderivative size = 227, normalized size of antiderivative = 1.83 \[ \int \cot ^2(c+d x) \csc ^5(c+d x) (a+a \sin (c+d x))^3 \, dx=-\frac {210 \, a^{3} \cos \left (d x + c\right )^{5} - 80 \, a^{3} \cos \left (d x + c\right )^{3} - 210 \, a^{3} \cos \left (d x + c\right ) - 105 \, {\left (a^{3} \cos \left (d x + c\right )^{6} - 3 \, a^{3} \cos \left (d x + c\right )^{4} + 3 \, a^{3} \cos \left (d x + c\right )^{2} - a^{3}\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 105 \, {\left (a^{3} \cos \left (d x + c\right )^{6} - 3 \, a^{3} \cos \left (d x + c\right )^{4} + 3 \, a^{3} \cos \left (d x + c\right )^{2} - a^{3}\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 32 \, {\left (11 \, a^{3} \cos \left (d x + c\right )^{5} - 20 \, a^{3} \cos \left (d x + c\right )^{3}\right )} \sin \left (d x + c\right )}{480 \, {\left (d \cos \left (d x + c\right )^{6} - 3 \, d \cos \left (d x + c\right )^{4} + 3 \, d \cos \left (d x + c\right )^{2} - d\right )}} \]

input
integrate(cos(d*x+c)^2*csc(d*x+c)^7*(a+a*sin(d*x+c))^3,x, algorithm="frica 
s")
 
output
-1/480*(210*a^3*cos(d*x + c)^5 - 80*a^3*cos(d*x + c)^3 - 210*a^3*cos(d*x + 
 c) - 105*(a^3*cos(d*x + c)^6 - 3*a^3*cos(d*x + c)^4 + 3*a^3*cos(d*x + c)^ 
2 - a^3)*log(1/2*cos(d*x + c) + 1/2) + 105*(a^3*cos(d*x + c)^6 - 3*a^3*cos 
(d*x + c)^4 + 3*a^3*cos(d*x + c)^2 - a^3)*log(-1/2*cos(d*x + c) + 1/2) + 3 
2*(11*a^3*cos(d*x + c)^5 - 20*a^3*cos(d*x + c)^3)*sin(d*x + c))/(d*cos(d*x 
 + c)^6 - 3*d*cos(d*x + c)^4 + 3*d*cos(d*x + c)^2 - d)
 
3.3.93.6 Sympy [F(-1)]

Timed out. \[ \int \cot ^2(c+d x) \csc ^5(c+d x) (a+a \sin (c+d x))^3 \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**2*csc(d*x+c)**7*(a+a*sin(d*x+c))**3,x)
 
output
Timed out
 
3.3.93.7 Maxima [A] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 200, normalized size of antiderivative = 1.61 \[ \int \cot ^2(c+d x) \csc ^5(c+d x) (a+a \sin (c+d x))^3 \, dx=-\frac {5 \, a^{3} {\left (\frac {2 \, {\left (3 \, \cos \left (d x + c\right )^{5} - 8 \, \cos \left (d x + c\right )^{3} - 3 \, \cos \left (d x + c\right )\right )}}{\cos \left (d x + c\right )^{6} - 3 \, \cos \left (d x + c\right )^{4} + 3 \, \cos \left (d x + c\right )^{2} - 1} - 3 \, \log \left (\cos \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\cos \left (d x + c\right ) - 1\right )\right )} + 90 \, a^{3} {\left (\frac {2 \, {\left (\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )\right )}}{\cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{2} + 1} - \log \left (\cos \left (d x + c\right ) + 1\right ) + \log \left (\cos \left (d x + c\right ) - 1\right )\right )} + \frac {160 \, a^{3}}{\tan \left (d x + c\right )^{3}} + \frac {96 \, {\left (5 \, \tan \left (d x + c\right )^{2} + 3\right )} a^{3}}{\tan \left (d x + c\right )^{5}}}{480 \, d} \]

input
integrate(cos(d*x+c)^2*csc(d*x+c)^7*(a+a*sin(d*x+c))^3,x, algorithm="maxim 
a")
 
output
-1/480*(5*a^3*(2*(3*cos(d*x + c)^5 - 8*cos(d*x + c)^3 - 3*cos(d*x + c))/(c 
os(d*x + c)^6 - 3*cos(d*x + c)^4 + 3*cos(d*x + c)^2 - 1) - 3*log(cos(d*x + 
 c) + 1) + 3*log(cos(d*x + c) - 1)) + 90*a^3*(2*(cos(d*x + c)^3 + cos(d*x 
+ c))/(cos(d*x + c)^4 - 2*cos(d*x + c)^2 + 1) - log(cos(d*x + c) + 1) + lo 
g(cos(d*x + c) - 1)) + 160*a^3/tan(d*x + c)^3 + 96*(5*tan(d*x + c)^2 + 3)* 
a^3/tan(d*x + c)^5)/d
 
3.3.93.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 228 vs. \(2 (112) = 224\).

Time = 0.39 (sec) , antiderivative size = 228, normalized size of antiderivative = 1.84 \[ \int \cot ^2(c+d x) \csc ^5(c+d x) (a+a \sin (c+d x))^3 \, dx=\frac {5 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} + 36 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 105 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 140 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 15 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 840 \, a^{3} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right ) - 600 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \frac {2058 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} + 600 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 15 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 140 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 105 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 36 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 5 \, a^{3}}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6}}}{1920 \, d} \]

input
integrate(cos(d*x+c)^2*csc(d*x+c)^7*(a+a*sin(d*x+c))^3,x, algorithm="giac" 
)
 
output
1/1920*(5*a^3*tan(1/2*d*x + 1/2*c)^6 + 36*a^3*tan(1/2*d*x + 1/2*c)^5 + 105 
*a^3*tan(1/2*d*x + 1/2*c)^4 + 140*a^3*tan(1/2*d*x + 1/2*c)^3 - 15*a^3*tan( 
1/2*d*x + 1/2*c)^2 - 840*a^3*log(abs(tan(1/2*d*x + 1/2*c))) - 600*a^3*tan( 
1/2*d*x + 1/2*c) + (2058*a^3*tan(1/2*d*x + 1/2*c)^6 + 600*a^3*tan(1/2*d*x 
+ 1/2*c)^5 + 15*a^3*tan(1/2*d*x + 1/2*c)^4 - 140*a^3*tan(1/2*d*x + 1/2*c)^ 
3 - 105*a^3*tan(1/2*d*x + 1/2*c)^2 - 36*a^3*tan(1/2*d*x + 1/2*c) - 5*a^3)/ 
tan(1/2*d*x + 1/2*c)^6)/d
 
3.3.93.9 Mupad [B] (verification not implemented)

Time = 10.45 (sec) , antiderivative size = 339, normalized size of antiderivative = 2.73 \[ \int \cot ^2(c+d x) \csc ^5(c+d x) (a+a \sin (c+d x))^3 \, dx=-\frac {a^3\,\left (5\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{12}-5\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{12}-36\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}+36\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-105\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}-140\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9+15\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8+600\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7-600\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5-15\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+140\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+105\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+840\,\ln \left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6\right )}{1920\,d\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6} \]

input
int((cos(c + d*x)^2*(a + a*sin(c + d*x))^3)/sin(c + d*x)^7,x)
 
output
-(a^3*(5*cos(c/2 + (d*x)/2)^12 - 5*sin(c/2 + (d*x)/2)^12 - 36*cos(c/2 + (d 
*x)/2)*sin(c/2 + (d*x)/2)^11 + 36*cos(c/2 + (d*x)/2)^11*sin(c/2 + (d*x)/2) 
 - 105*cos(c/2 + (d*x)/2)^2*sin(c/2 + (d*x)/2)^10 - 140*cos(c/2 + (d*x)/2) 
^3*sin(c/2 + (d*x)/2)^9 + 15*cos(c/2 + (d*x)/2)^4*sin(c/2 + (d*x)/2)^8 + 6 
00*cos(c/2 + (d*x)/2)^5*sin(c/2 + (d*x)/2)^7 - 600*cos(c/2 + (d*x)/2)^7*si 
n(c/2 + (d*x)/2)^5 - 15*cos(c/2 + (d*x)/2)^8*sin(c/2 + (d*x)/2)^4 + 140*co 
s(c/2 + (d*x)/2)^9*sin(c/2 + (d*x)/2)^3 + 105*cos(c/2 + (d*x)/2)^10*sin(c/ 
2 + (d*x)/2)^2 + 840*log(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2))*cos(c/2 + 
(d*x)/2)^6*sin(c/2 + (d*x)/2)^6))/(1920*d*cos(c/2 + (d*x)/2)^6*sin(c/2 + ( 
d*x)/2)^6)